急~~函数f(x)=x^3-6 kx+3k在区间(0,1)内有最小值,求实数k的取值范围
展开全部
因为f(x)=x^3-6kx+3k
所以f'(x)=3x^2-6k,很明显可以看出k=0的时候f(x)单调递增;k≠0的时候先增再减后增
因为函数f(x)=x^3-6 kx+3k在区间(0,1)内有最小值(千万注意,(0,1)是开区间的)
即函数f'(x)=3x^2-6k在区间(0,1)内有零点,且必须是在零点左边f'(x)<0,在零点右边f'(x)>0
即f'(x)=0的较大的零点在(0,1)内,即k≥0,较大零点x=√(2k)∈(0,1)
则k∈(0,1/2)
所以f'(x)=3x^2-6k,很明显可以看出k=0的时候f(x)单调递增;k≠0的时候先增再减后增
因为函数f(x)=x^3-6 kx+3k在区间(0,1)内有最小值(千万注意,(0,1)是开区间的)
即函数f'(x)=3x^2-6k在区间(0,1)内有零点,且必须是在零点左边f'(x)<0,在零点右边f'(x)>0
即f'(x)=0的较大的零点在(0,1)内,即k≥0,较大零点x=√(2k)∈(0,1)
则k∈(0,1/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询