已知抛物线y^2=4x的焦点为F,过点(-1,0)的直线交抛物线与A,B,A关于x轴对称点为D,求证F在直线BD上

zhg2011
2010-10-10 · TA获得超过616个赞
知道小有建树答主
回答量:270
采纳率:83%
帮助的人:95万
展开全部
F(1,0),设直线为y=k(x+1),与抛物线方程联立,整理得k^2x^2+(2k^2+4)+k^2=0,设A(x1,y1) B(x2,y2) D为(x1,-y1) x1+x2=-(2k^2+4)/k^2,x1x2=1 y1y2=k(x1+1)k(x2+1)=4 y1+y2=-4/k,直线BD:y-y2=(y2+y1)/(x2-x1)*(x-x2)(点斜式),即y-y2=4/(y2-y1)*(x-y2^2/4),令y=0,则x=1,所以F(1,0)在直线BD上。 该题为2010年全国I数学卷的21题。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式