高等代数中的第一数学归纳法和第二数学归纳法有什么区别?什么时候会用到数学归纳法?

 我来答
床前明月儿
高能答主

2019-06-25 · 探索生活中的另一种可能
床前明月儿
采纳数:101 获赞数:171950

向TA提问 私信TA
展开全部

一、定义不同

1、第一数学归纳法:第一数学归纳法可以概括为以下三步:归纳奠基:证明n=1时命题成立;归纳假设:假设n=k时命题成立;归纳递推:由归纳假设推出n=k+1时命题也成立.

2、第二数学归纳法:数学归纳法是一种重要的论证方法,本文从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨。

二、证明过程不同

1、第一数学归纳法:f(n)=2*f(n-1)+3。

2、第二数学归纳法:f(n)=2*f(n-1)+3*f(n-2)+4。

三、使用方法不同

1、第一数学归纳法:第一归纳法是第二归纳法的特殊形式。凡事能用第一归纳法的,都可以使用第二归纳法。

2、第二数学归纳法:第二归纳法可以证明的,第一归纳法并不一定能证明。

参考资料来源:百度百科-第一数学归纳法

参考资料来源:百度百科-第二数学归纳法

NS138613
高粉答主

2019-07-13 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:142
采纳率:100%
帮助的人:2.7万
展开全部

一、定义不同

1、第一数学归纳法:第一数学归纳法可以概括为以下三步:归纳奠基:证明n=1时命题成立;归纳假设:假设n=k时命题成立;归纳递推:由归纳假设推出n=k+1时命题也成立.

2、第二数学归纳法:数学归纳法是一种重要的论证方法,本文从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨。

二、使用方法不同

1、第一数学归纳法:第一归纳法是第二归纳法的特殊形式。凡事能用第一归纳法的,都可以使用第二归纳法。

2、第二数学归纳法:第二归纳法可以证明的,第一归纳法并不一定能证明。

第二数学归纳法用反证法证明。

假设命题不是对一切自然数都成立。命N表示使命题不成立的自然数所成的集合,显然N非空,于是,由最小数原理N中必有最小数m,那么m≠1,否则将与(1)矛盾。所以m-1是一个自然数。

但m是N中的最小数,所以m-1能使命题成立。这就是说,命题对于一切≤m-1自然数都成立,根据(2)可知,m也能使命题成立,这与m是使命题不成立的自然数集N中的最小数矛盾。因此定理获证。

扩展资料

第二数学归纳法的证明:

对于证明过程的第一个步骤即n=1(或某个整数a)的情形无需多说,只需要用n=1(或某个整数a)直接验证一下,即可断定欲证之命题的真伪。所以关键在于第二个步骤,即由n≤k到n=k+1的验证过程。

事实上,不难从例1的第二个步骤的论证过程中发现,证明等式在n=k+1时成立是利用了假设条件;等式在n=k及n=k-1时均需成立。同样地,例2也不例外,只是形式的把n=k及n=k-1分别代换成了n=k-1和n=k-2。

然而例3就不同了,第二个步骤的论证过程,是把论证命题在n=k+1时的成立问题转化为验证命题在n=k-2+1时的成立问题。换言之,使命题在n=k+1成立的必要条件是命题在n=k-2+1时成立,根据1的取值范围,而命题在n=k-k+1互时成立的实质是命题对一切≤k的自然数n来说都成立。。

以上分析表明,假如论证命在n=k+1时的真伪时,必须以n取不大于k的两个或两个以上乃至全部的自然数时命题的真伪为其论证的依据,则一般选用第二数学归纳法进行论证。

之所以这样,其根本原则在于第二数学归纳法的归纳假设的要求较之第一数学归纳法更强,不仅要求命题在n=k时成立,而且还要求命题对于一切小于k的自然数来说都成立。

参考资料来源:百度百科-第一数学归纳法

参考资料来源:百度百科-第二数学归纳法

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阚化UH
2015-11-08 · 超过25用户采纳过TA的回答
知道答主
回答量:133
采纳率:0%
帮助的人:36万
展开全部
第二数学归纳法2)和第一归纳法1)等价,只须证明两者(ii)等价即可 1)推2)显然,既然命题对一切小于k的正整数都成立,那么对k-1也成立,由1)命题对k成立 2)推1)假设1)不正确,则存在正整数k,命题对k成立,但对k+1不成立,不妨设k0是使命...
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gb...1@163.com
2015-11-08 · 超过57用户采纳过TA的回答
知道答主
回答量:152
采纳率:0%
帮助的人:56.9万
展开全部
当n=k+1,左式为,(k+1+1)+(k+1+2)+……+(k+1+k+1) 当n=k,左式为,(k+1)+(k+2)+……+(k+k) 故相差1*k+(k+1+k+1)=3k+2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式