高等数学求微分方程通解 求解题过程
2个回答
展开全部
特征根是 ±2i, 可设特解 y = (ax+b)cosx + (cx+d)sinx
则 y' = acosx+csinx -(ax+b)sinx + (cx+d)cosx
= (cx+a+d)cosx - (ax+b-c)sinx
y'' = ccosx-asinx - (cx+a+d)sinx - (ax+b-c)cosx
= -(ax+b-2c)cosx - (cx+2a+d)sinx
代入方程得 [(4ax+4b) - (ax+b-2c)]cosx +
[(4cx+4d) - (cx+2a+d)]sinx = xcosx
3a = 1, 3b+2c =0, 3c = 0, 3d-2a = 0
得 a = 1/3, c = 0, b = 0, d = 2/9
特解 y = (1/3)xcosx + (2/9)sinx
微分方程的通解是 y = C1cos2x + C2sin2x + (1/3)xcosx + (2/9)sinx
则 y' = acosx+csinx -(ax+b)sinx + (cx+d)cosx
= (cx+a+d)cosx - (ax+b-c)sinx
y'' = ccosx-asinx - (cx+a+d)sinx - (ax+b-c)cosx
= -(ax+b-2c)cosx - (cx+2a+d)sinx
代入方程得 [(4ax+4b) - (ax+b-2c)]cosx +
[(4cx+4d) - (cx+2a+d)]sinx = xcosx
3a = 1, 3b+2c =0, 3c = 0, 3d-2a = 0
得 a = 1/3, c = 0, b = 0, d = 2/9
特解 y = (1/3)xcosx + (2/9)sinx
微分方程的通解是 y = C1cos2x + C2sin2x + (1/3)xcosx + (2/9)sinx
展开全部
该方程对应的齐次方程的通解为y=C1cos2x+C2sin2x,其特解可设为y*=(ax+b)cosx+(cx+d)sinx,代入原方程,得到(3ax+3b+2c)cosx+(3cx-2a+3d)sinx=xcosx,解得a=1/3,b=0,c=0,d=2/9,因此特解为y*=xcosx/3+2sinx/9,通解为y=xcosx/3+2sinx/9+C1cos2x+C2sin2x。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询