一道线性代数题目,3小问
越详细越好啊1,1-h^2-1,-1上面这个是个m的2*2矩阵.题目:(1)Forgeneralh,diagonalizem.(2)Findtheprojectorsto...
越详细越好啊
1 , 1-h^2
-1 , -1
上面这个是个m的2*2矩阵.
题目:
(1) For general h, diagonalize m.
(2) Find the projectors to the eigenvalues of m
(3) What happens with eigenvectors when h = 0? What happens with m when h = 0? 展开
1 , 1-h^2
-1 , -1
上面这个是个m的2*2矩阵.
题目:
(1) For general h, diagonalize m.
(2) Find the projectors to the eigenvalues of m
(3) What happens with eigenvectors when h = 0? What happens with m when h = 0? 展开
2个回答
展开全部
1。将矩阵对角化
|λE-m|=0
λ-1 h^2-1
1 λ+1 =0
即:(λ-1)(λ+1)-(h^2-1)=0
λ^2-h^2=0
λ=-h,h
则对角矩阵为
-h 0
0 h
2. 特征向量为:
当λ=-h,
(λE-m)p=0
-h-1 h^2-1 * p1 =0
1 -h+1
对于系数矩阵
-h-1 h^2-1
1 -h+1
第2行乘以(h+1)加到第一行
0 0
1 -h+1
则p=(h-1,1)
当λ=h,
(λE-m)p=0
h-1 h^2-1 * p2 =0
1 h+1
对于系数矩阵
h-1 h^2-1
1 h+1
第2行乘以(1-h)加到第一行
0 0
1 h+1
则p=(h+1,-1)
则特征向量为:(p1,p2)
h-1 h+1
1 -1
h=0,则两个特征值相等,对角阵为零矩阵
h=0,此时,两个特征向量
p1=(-1,1)T (T为转置)
p2=(1,-1)T
显然,p1,p2线性相关,所以,对于特征值为0,两个特征向量线性相关,
则:m不可以对角化
|λE-m|=0
λ-1 h^2-1
1 λ+1 =0
即:(λ-1)(λ+1)-(h^2-1)=0
λ^2-h^2=0
λ=-h,h
则对角矩阵为
-h 0
0 h
2. 特征向量为:
当λ=-h,
(λE-m)p=0
-h-1 h^2-1 * p1 =0
1 -h+1
对于系数矩阵
-h-1 h^2-1
1 -h+1
第2行乘以(h+1)加到第一行
0 0
1 -h+1
则p=(h-1,1)
当λ=h,
(λE-m)p=0
h-1 h^2-1 * p2 =0
1 h+1
对于系数矩阵
h-1 h^2-1
1 h+1
第2行乘以(1-h)加到第一行
0 0
1 h+1
则p=(h+1,-1)
则特征向量为:(p1,p2)
h-1 h+1
1 -1
h=0,则两个特征值相等,对角阵为零矩阵
h=0,此时,两个特征向量
p1=(-1,1)T (T为转置)
p2=(1,-1)T
显然,p1,p2线性相关,所以,对于特征值为0,两个特征向量线性相关,
则:m不可以对角化
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询