平行四边形分类讨论数学题 急!!! 100
4.
容易求出抛物线为y = (x + 1)(x - 3), AB = 4
(i) AB为平行四边形的一边,那么PE = 4, 且与AB平行
令PE为y = e, E(0, e), 于是P(-4, e)或P(4, e)
P的横坐标为-4时, y = (-4 + 1)(-4 - 3) = 21, P(-4, 21), E(0, 21)
P的横坐标为4时, y = (4+1)(4-1) = 5, P(4, 5), E(0, 5)
(ii) AB为对角线
AB的中点为D(1, 0), 令E(0, e), 则D也是PE的中点, 设P(p, p')
则 (p+0)/2 = 1, p =2
(p' + e)/2 = 0, p' = -e
P(2, -e)在抛物线上: -e = (2 + 1)(2 - 3), e = 3
P(2, -3), E(0, 3)
5
(1) y = (x + 1)(x + 5), 对称轴x = (-1 - 5)/2 = -3, P(-3, -4), D(-3, 0)
(2) PE∥KJ, 于是EJ∥PK, EJ即AC的斜率为(5- 0)/[0 - (-5)] = 1, PK的斜率也是1, 方程为y + 4 = x + 3
与抛物线联立: (x + 1)(x + 5) = x - 1, (x + 2)(x + 3) = 0
x = -2 (舍去x = -3, 对称轴), y = -3
K(-2, -3)
(3)与4类似,请自己做
(4)漏字,第四个顶点是?
广告 您可能关注的内容 |