2个回答
展开全部
解:(1)DE+DF=CG.
证明:连接AD,
则S△ABC=S△ABD+S△ACD,即
12AB•CG=
12AB•DE+
12AC•DF,
∵AB=AC,
∴CG=DE+DF.
(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE-DF=CG.
理由:连接AD,则S△ABD=S△ABC+S△ACD,
即
12AB•DE=
12AB•CG+
12AC•DF
∵AB=AC,
∴DE=CG+DF,
即DE-DF=CG.
同理当D点在CB的延长线上时,则有DE-DF=CG,说明方法同上
证明:连接AD,
则S△ABC=S△ABD+S△ACD,即
12AB•CG=
12AB•DE+
12AC•DF,
∵AB=AC,
∴CG=DE+DF.
(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE-DF=CG.
理由:连接AD,则S△ABD=S△ABC+S△ACD,
即
12AB•DE=
12AB•CG+
12AC•DF
∵AB=AC,
∴DE=CG+DF,
即DE-DF=CG.
同理当D点在CB的延长线上时,则有DE-DF=CG,说明方法同上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询