设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a= (2)试确定a的值,使f(x)的奇函数

fnxnmn
2010-10-10 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6649万
展开全部
1.函数f(x)=x(e^x+ae^(-x)),x∈R,是偶函数,则f(-x)=f(x).
-x(e^(-x)+ae^x)= x(e^x+ae^(-x))
x(e^x+ae^(-x))+ x(e^(-x)+ae^x)=0
x[(1+a) e^x+(a+1) e^(-x)]=0
x(e^x+e^(-x))(1+a)=0
a=-1.
2.若f(x)是奇函数,因为函数y=x是奇函数,
所以函数e^x+ae^(-x)必须是偶函数。
即有e^(-x)+ae^x= e^x+ae^(-x)
e^(-x)+ae^x- e^x-ae^(-x)=0
(a-1) e^x+(1-a) e^(-x)=0
(a-1)( e^x- e^(-x))=0
所以a=1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式