令x=2tant
原式=∫2sect/2tant*2sec²tdt
=2∫sec^3 tdt
=2*∫sectd(tant)
=2sect*tant-2*∫sect*tan²tdt
=2sect*tant-2∫[sec^3 t-sect]dt
=2sect*tant-2*∫sec^3 tdt+2*∫sectdt
所以原式=sect*tant+∫sectdt
=sect*tant+ln|sect+tant|+C
=x/2*√(x²+4)/2+ln[x/2+√(x²+4)/2]+C1
=x*√(x²+4)/4+ln|x+√(x²+4)|+C