1乘3分之一加2乘4分之一加3乘5分之一加到18乘20分之一
1个回答
展开全部
1/1*3 +1/2*4 +1/3*5 +1/4*6 +......+1/17*19 +1/18*20
=(1/1*3 +1/3*5+......+1/17*19 )+(1/2*4 +1/4*6 +......+1/18*20 )
=1/2 *[(1 - 1/3)+(1/3 - 1/5)+......+(1/17 - 1/19)] + 1/2 *[(1/2 - 1/4)+(1/4 - 1/6)+......+(1/18 - 1/20)]
=1/2*[(1-1/3+1/3-1/5+......+1/17-1/19)+(1/2-1/4+1/4-1/6+......+1/18-1/20)]
=1/2*[(1-1/19)+(1/2-1/20)]
=1/2*(18/19 +9/20)
=1/2* (521/380)
=521/760
这道题利用了两次分数拆分的方法。
公式:1/n(n+d)=1/d *[1/n - 1/n+d]
=(1/1*3 +1/3*5+......+1/17*19 )+(1/2*4 +1/4*6 +......+1/18*20 )
=1/2 *[(1 - 1/3)+(1/3 - 1/5)+......+(1/17 - 1/19)] + 1/2 *[(1/2 - 1/4)+(1/4 - 1/6)+......+(1/18 - 1/20)]
=1/2*[(1-1/3+1/3-1/5+......+1/17-1/19)+(1/2-1/4+1/4-1/6+......+1/18-1/20)]
=1/2*[(1-1/19)+(1/2-1/20)]
=1/2*(18/19 +9/20)
=1/2* (521/380)
=521/760
这道题利用了两次分数拆分的方法。
公式:1/n(n+d)=1/d *[1/n - 1/n+d]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |