离散数学,求 (p→r)∧(q→﹁r)∧(﹁r→(p∨q)) 的主析取范氏,详细一些
1个回答
展开全部
(p→r)∧(q→¬r)∧(¬r→(p∨q))
⇔ (¬p∨r)∧(¬q∨¬r)∧(r∨(p∨q)) 变成 合取析取⇔ (¬p∨r)∧(¬q∨¬r)∧(r∨p∨q) 结合律⇔ (¬p∨(¬q∧q)∨r)∧((¬p∧p)∨¬q∨¬r)∧(p∨q∨r) 补项⇔ ((¬p∨¬q∨r)∧(¬p∨q∨r))∧((¬p∧p)∨¬q∨¬r)∧(p∨q∨r) 分配律⇔ (¬p∨¬q∨r)∧(¬p∨q∨r)∧((¬p∧p)∨¬q∨¬r)∧(p∨q∨r) 结合律⇔ (¬p∨¬q∨r)∧(¬p∨q∨r)∧((¬p∨¬q∨¬r)∧(p∨¬q∨¬r))∧(p∨q∨r) 分配律⇔ (¬p∨¬q∨r)∧(¬p∨q∨r)∧(¬p∨¬q∨¬r)∧(p∨¬q∨¬r)∧(p∨q∨r) 结合律得到主合取范式,再检查遗漏的极大项⇔ M0∧M1∧M3∧M4∧M7
⇔ ∏(0,1,3,4,7)
⇔ ¬∏(0,1,3,4,7)
⇔ ∑(0,1,3,4,7)
⇔ m0∨m1∨m3∨m4∨m7⇔ ¬(p∨q∨¬r)∨¬(p∨¬q∨r)∨¬(¬p∨q∨¬r) 德摩根定律⇔ (¬p∧¬q∧r)∨(¬p∧q∧¬r)∨(p∧¬q∧r) 德摩根定律
得到主析取范式
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询