关于多元函数微分的问题
关于多元函数微分的问题我知道一元函数方程两边同时微分就是同时写上个d然后和链式求导一样慢慢微分。多元函数如果同时写上d也不好求啊。不知道对哪个求微分。怎么办...
关于多元函数微分的问题我知道一元函数方程两边同时微分就是同时写上个d然后和链式求导一样慢慢微分。多元函数如果同时写上d也不好求啊。不知道对哪个求微分。怎么办
展开
2个回答
展开全部
∵x=(e^u)*cosv,y=(e^u)*sinv,
∴U=ln(x²+y²),V=arctan(y/x).
∴Ux=2x/(x²+y²),Vx=-y/(x²+y²),
Uy=2y/(x²+y²),Vy=x/(x²+y²).
∵Z=UV,
∴Zu=V,Zv=u.
(Ux,Vx,Uy,Vy,Zu,Zv分别表示它们关于下标的偏导数)。
故dz/dx=Zu*Ux+Zv*Vx
=V*(2x/(x²+y²))+U*(-y/(x²+y²))
=[2x*arctan(y/x)-y*ln(x²+y²)]/(x²+y²);
dz/dy=Zu*Uy+Zv*Vy
=V*(2y/(x²+y²))+U*(x/(x²+y²))
=[2y*arctan(y/x)+x*ln(x²+y²)]/(x²+y²).
∴U=ln(x²+y²),V=arctan(y/x).
∴Ux=2x/(x²+y²),Vx=-y/(x²+y²),
Uy=2y/(x²+y²),Vy=x/(x²+y²).
∵Z=UV,
∴Zu=V,Zv=u.
(Ux,Vx,Uy,Vy,Zu,Zv分别表示它们关于下标的偏导数)。
故dz/dx=Zu*Ux+Zv*Vx
=V*(2x/(x²+y²))+U*(-y/(x²+y²))
=[2x*arctan(y/x)-y*ln(x²+y²)]/(x²+y²);
dz/dy=Zu*Uy+Zv*Vy
=V*(2y/(x²+y²))+U*(x/(x²+y²))
=[2y*arctan(y/x)+x*ln(x²+y²)]/(x²+y²).
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询