展开全部
首先自己证明一个公式
sin(a+b)+sin(a-b)=2sinacosb
进入正题:
cos10º+tan20ºsin10º
=cos10+sin20sin10/cos20
=(cos10cos20+sin20sin10)/cos20
=cos(20-10)/cos20
=cos10/cos20
=sin80/cos20
=2sin40cos40/cos20
=4sin20cos20cos40/cos20
=4sin20cos40
=2[sin(20+40)+sin(20-40)]
=2sin60-2sin20
=√3-2sin20
所以 2sin20º+cos10º+tan20ºsin10º=√3
sin(a+b)+sin(a-b)=2sinacosb
进入正题:
cos10º+tan20ºsin10º
=cos10+sin20sin10/cos20
=(cos10cos20+sin20sin10)/cos20
=cos(20-10)/cos20
=cos10/cos20
=sin80/cos20
=2sin40cos40/cos20
=4sin20cos20cos40/cos20
=4sin20cos40
=2[sin(20+40)+sin(20-40)]
=2sin60-2sin20
=√3-2sin20
所以 2sin20º+cos10º+tan20ºsin10º=√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询