1个回答
展开全部
(1)f(x)=[cos(π/3)cosx - sin(π/3)sinx][cos(π/3)cosx + sin(π/3)sinx]
=[(1/2)cosx]² - [(√3/2)sinx]²
=(1/4)cos²x - (3/4)sin²x
=(1/4)(cos²x - sin²x) - (1/2)sin²x
=(1/4)cos2x - (1/2)[(1-cos2x)/2]
=(1/4)cos2x + (1/4)cos2x - 1/4
=(1/2)cos2x - 1/4
∴T=2π/2=π
=[(1/2)cosx]² - [(√3/2)sinx]²
=(1/4)cos²x - (3/4)sin²x
=(1/4)(cos²x - sin²x) - (1/2)sin²x
=(1/4)cos2x - (1/2)[(1-cos2x)/2]
=(1/4)cos2x + (1/4)cos2x - 1/4
=(1/2)cos2x - 1/4
∴T=2π/2=π
更多追问追答
追答
(2)h(x)=(1/2)cos2x - 1/4 - (1/2)sin2x + 1/4
=(1/2)(cos2x - sin2x)
=(1/2)•√2•[(√2/2)cos2x - (√2/2)sin2x]
=(√2/2)cos(2x + π/4)
∵余弦函数的值域是[-1,1]
∴h(x)的最大值是√2/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询