1个回答
展开全部
由x^3+y^3+z^3-3xyz=0,得x=-1,y=0时z=1.
3x^2dx+3y^2dy+3z^2dz-3yzdx-3xzdy-3xydz=0,
(z^2-xy)dz=(yz-x^2)dx+(xz-y^2)dy,
dz=[(yz-x^2)dx+(xz-y^2)dy]/(z^2-xy),
由u=x^2*e^y*z^3得
du=2xe^y*z^3dx+x^2*e^y*z^3dy+3x^2*e^y*z^2dz
=2xe^y*z^3dx+x^2*e^y*z^3dy+3x^2*e^y*z^2*[(yz-x^2)dx+(xz-y^2)dy]/(z^2-xy),
∴du|x=-1,y=0,z=1
=-2dx+dy+3(-dx-dy)
=-5dx-2dy.
3x^2dx+3y^2dy+3z^2dz-3yzdx-3xzdy-3xydz=0,
(z^2-xy)dz=(yz-x^2)dx+(xz-y^2)dy,
dz=[(yz-x^2)dx+(xz-y^2)dy]/(z^2-xy),
由u=x^2*e^y*z^3得
du=2xe^y*z^3dx+x^2*e^y*z^3dy+3x^2*e^y*z^2dz
=2xe^y*z^3dx+x^2*e^y*z^3dy+3x^2*e^y*z^2*[(yz-x^2)dx+(xz-y^2)dy]/(z^2-xy),
∴du|x=-1,y=0,z=1
=-2dx+dy+3(-dx-dy)
=-5dx-2dy.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询