
高中数学题求解
展开全部
(3)
证:
∫[-π:π]sin²mxdx
=2∫[0:π]sin²mxdx
=[1/(2m)]∫[0:π](1-cos2mx)d(2mx)
=[1/(2m)](2mx -sin2mx)|[0:π]
=[1/(2m)][(2mπ-sin(2mπ)-(2m·0-sin0)]
=[1/(2m)]((2mπ-0-0+0)
=π
证:
∫[-π:π]sin²mxdx
=2∫[0:π]sin²mxdx
=[1/(2m)]∫[0:π](1-cos2mx)d(2mx)
=[1/(2m)](2mx -sin2mx)|[0:π]
=[1/(2m)][(2mπ-sin(2mπ)-(2m·0-sin0)]
=[1/(2m)]((2mπ-0-0+0)
=π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询