两个同心金属球壳构成一个球形电容器,内球壳半径为R1,外球壳半径为R2,中间是空气,

构成一个球形空气电容器,设内、外球壳上所带电荷量分别为+Q和-Q,求(1)两球面间电场强度E的大小;(2)两球面间的电势差U12;(3)该球形电容器的电容量C。... 构成一个球形空气电容器,设内、外球壳上所带电荷量分别为+Q和-Q,求(1)两球面间电场强度E的大小;(2)两球面间的电势差U12;(3)该球形电容器的电容量C。 展开
 我来答
帐号已注销
2020-07-21 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:163万
展开全部

解:

(1)设内球壳带点Q,由高斯定理得: E=Q/(4πε0εrR^2);对上式两边对R从R1积到R2,得电势: U12=Q/(4πε0εrR1^2)-Q/(4πε0εrR2^2);解出Q即可。

(2)电容器的电容C=Q/U12

(3)电容器的储存能量E=1/2C(U12)^2

根据高斯定理,外球壳以外和内球壳以内都电场为零,因为电荷和为零。两球壳中间的电场还是用高斯定律求。E=Q/(介电常数乘以面积)

外球壳内表面因静电感应带-Q的电荷,外表面因接地不带电荷,所以:

内球壳所产电势:Q/4πεR1;

外球壳所产电势为:-Q/4πεR2

扩展资料:

电场强度对任意封闭曲面的通量只取决于该封闭曲面内电荷的代数和,与曲面内电荷的位置分布情况无关,与封闭曲面外的电荷亦无关。在真空的情况下,Σq是包围在封闭曲面内的自由电荷的代数和。当存在介质时,Σq应理解为包围在封闭曲面内的自由电荷和极化电荷的总和。

高斯定理是从库仑定律直接导出的,完全依赖于电荷间作用力的平方反比律。把高斯定理应用于处在静电平衡条件下的金属导体,就得到导体内部无净电荷的结论,因而测定导体内部是否有净电荷是检验库仑定律的重要方法。

参考资料来源:百度百科-高斯定理

北京航源高科科技有限公司_
2024-11-26 广告
好不好,谁更好的问题是见仁见智的。一般都是要把机构的资质、行业经验、外部资源、成功案例情况等综合来评估和考量。是需要从当前自己关心的方面去衡量,不是一句话两句话能说完的。以上回答如果还觉得不够详细,可以来咨询下北京航源高科科技有限公司。 我... 点击进入详情页
本回答由北京航源高科科技有限公司_提供
掌傲龙x
推荐于2018-02-26 · TA获得超过701个赞
知道小有建树答主
回答量:1879
采纳率:6%
帮助的人:303万
展开全部
解:(1)设内球壳带点Q,由高斯定理得: E=Q/(4πε0εrR^2); 对上式两边对R从R1积到R2,得电势: U12=Q/(4πε0εrR1^2)-Q/(4πε0εrR2^2); 解出Q即可 电容器的电容C=Q/U12 (3)电容器的储存能量E=1/2C(U12)^2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式