夹逼准则
limn->∞n(1/(n^2+∏)+1/(n^2+2∏)+…+1/(n^2+n∏)求解题过程...
lim n->∞ n(1/(n^2+∏)+1/(n^2+2∏)+…+1/(n^2+n∏)
求解题过程 展开
求解题过程 展开
1个回答
展开全部
∏是个常数吧
因为 1/(n^2+∏)>1/(n^2+2∏)>+…+>1/(n^2+n∏)
所以
N*N(1/(n^2+N∏))<n(1/(n^2+∏)+1/(n^2+2∏)+…+1/(n^2+n∏)<N*N(1/(n^2+∏))
N*N(1/(n^2+N∏))=1/(1+∏/N)
N*N(1/(n^2+∏))=1/(1+∏/N^2)
当lim n->∞ 1/(1+∏/N)=1
当lim n->∞ 1/(1+∏/N^2)=1
所以当lim n->∞ 原式=1
因为 1/(n^2+∏)>1/(n^2+2∏)>+…+>1/(n^2+n∏)
所以
N*N(1/(n^2+N∏))<n(1/(n^2+∏)+1/(n^2+2∏)+…+1/(n^2+n∏)<N*N(1/(n^2+∏))
N*N(1/(n^2+N∏))=1/(1+∏/N)
N*N(1/(n^2+∏))=1/(1+∏/N^2)
当lim n->∞ 1/(1+∏/N)=1
当lim n->∞ 1/(1+∏/N^2)=1
所以当lim n->∞ 原式=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询