如何在java中获取mysql5.7版本里的json-CSDN论坛

 我来答
好程序员
2017-03-21 · HTML5前端培训/大数据培训/Java
好程序员
好程序员是IT高端课程培训基地,从平凡到卓越,为梦想而拼搏。
向TA提问
展开全部
DELIMITER $$

USE `dw`$$

DROP FUNCTION IF EXISTS `fn_Json_getKeyValue`$$

CREATE DEFINER=`data`@`%` FUNCTION `fn_Json_getKeyValue`(
in_JsonArray VARCHAR(4096),#JSON数组字符串
in_Index TINYINT, #JSON对象序号,序号从1开始
in_KeyName VARCHAR(64)#键名
) RETURNS VARCHAR(512) CHARSET utf8
BEGIN
DECLARE vs_return VARCHAR(4096);
DECLARE vs_JsonArray, vs_Json, vs_KeyName VARCHAR(4096);
#declare vs_Json varchar(4096);
DECLARE vi_pos1, vi_pos2 SMALLINT UNSIGNED;

#写监控日志
#insert into dw.t_etl_log(sp_name, title, description)
#values('dw.fn_Json_getKeyValue', '通过Json键名取键值', concat('in_JsonArray=', in_JsonArray));

SET vs_JsonArray = TRIM(in_JsonArray);
SET vs_KeyName = TRIM(in_KeyName);

IF vs_JsonArray = '' OR vs_JsonArray IS NULL
OR vs_KeyName = '' OR vs_KeyName IS NULL
OR in_Index <= 0 OR in_Index IS NULL THEN
SET vs_return = NULL;
ELSE
#去掉方括号
SET vs_JsonArray = REPLACE(REPLACE(vs_JsonArray, '[', ''), ']', '');
#取指定的JSON对象
SET vs_json = SUBSTRING_INDEX(SUBSTRING_INDEX(vs_JsonArray,'}', in_index),'}',-1);

IF vs_json = '' OR vs_json IS NULL THEN
SET vs_return = NULL;
ELSE
SET vs_KeyName = CONCAT('"', vs_KeyName, '":');
SET vi_pos1 = INSTR(vs_json, vs_KeyName);
IF vi_pos1 > 0 THEN
#如果键名存在
SET vi_pos1 = vi_pos1 + CHAR_LENGTH(vs_KeyName);
SET vi_pos2 = LOCATE(',', vs_json, vi_pos1);
IF vi_pos2 = 0 THEN
#最后一个元素没有','分隔符,也没有结束符'}'
SET vi_pos2 = CHAR_LENGTH(vs_json) + 1;
END IF;
SET vs_return = REPLACE(MID(vs_json, vi_pos1, vi_pos2 - vi_pos1), '"', '');
END IF;
END IF;
END IF;

RETURN(vs_return);
END$$

DELIMITER ;

测试: {"old_current_score":"2","new_current_score":"0","old_grade_id":"1","new_grade_id":"1","grade_time":"2016-04-09 00:43:26","grade_upgrade_time":"2017-04-09 00:43:26"}
select fn_Json_getKeyValue(reason,1,'old_grade_id');
爱可生云数据库
2020-04-20 · MySQL开源数据库领先者
爱可生云数据库
爱可生,金融级开源数据库和数据云服务整体解决方案提供商;优秀的开源数据库技术,企业级数据处理技术整体解决方案提供商;私有云数据库云服务市场整体解决方案提供商。
向TA提问
展开全部

我们知道,JSON是一种轻量级的数据交互的格式,大部分NO SQL数据库的存储都用JSON。MySQL从5.7开始支持JSON格式的数据存储,并且新增了很多JSON相关函数。MySQL 8.0 又带来了一个新的把JSON转换为TABLE的函数JSON_TABLE,实现了JSON到表的转换。


举例一

我们看下简单的例子:

简单定义一个两级JSON 对象

mysql> set @ytt='{"name":[{"a":"ytt","b":"action"},  {"a":"dble","b":"shard"},{"a":"mysql","b":"oracle"}]}';Query OK, 0 rows affected (0.00 sec)

第一级:

mysql> select json_keys(@ytt);+-----------------+| json_keys(@ytt) |+-----------------+| ["name"]        |+-----------------+1 row in set (0.00 sec)

第二级:

mysql> select json_keys(@ytt,'$.name[0]');+-----------------------------+| json_keys(@ytt,'$.name[0]') |+-----------------------------+| ["a", "b"]                  |+-----------------------------+1 row in set (0.00 sec)

我们使用MySQL 8.0 的JSON_TABLE 来转换 @ytt。

  • mysql> select * from json_table(@ytt,'$.name[*]' columns (f1 varchar(10) path '$.a', f2 varchar(10) path '$.b')) as tt;

  • +-------+--------+

  • | f1    | f2     |

  • +-------+--------+

  • | ytt   | action |

  • | dble  | shard  |

  • | mysql | oracle |

  • +-------+--------+

  • 3 rows in set (0.00 sec)

  • 举例二

    再来一个复杂点的例子,用的是EXPLAIN 的JSON结果集。

    JSON 串 @json_str1。

  • set @json_str1 = ' {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "1.00"    },    "table": {      "table_name": "bigtable",      "access_type": "const",      "possible_keys": [        "id"      ],      "key": "id",      "used_key_parts": [        "id"      ],      "key_length": "8",      "ref": [        "const"      ],      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "0.00",        "eval_cost": "0.20",        "prefix_cost": "0.00",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "log_time",        "str1",        "str2"      ]    }  }}';


  • 第一级:

  • mysql> select json_keys(@json_str1) as 'first_object';+-----------------+| first_object    |+-----------------+| ["query_block"] |+-----------------+1 row in set (0.00 sec)


  • 第二级:

  • mysql> select json_keys(@json_str1,'$.query_block') as 'second_object';+-------------------------------------+| second_object                       |+-------------------------------------+| ["table", "cost_info", "select_id"] |+-------------------------------------+1 row in set (0.00 sec)


  • 第三级:

  • mysql>  select json_keys(@json_str1,'$.query_block.table') as 'third_object'\G*************************** 1. row ***************************third_object: ["key","ref","filtered","cost_info","key_length","table_name","access_type","used_columns","possible_keys","used_key_parts","rows_examined_per_scan","rows_produced_per_join"]1 row in set (0.01 sec)


  • 第四级:

  • mysql> select json_extract(@json_str1,'$.query_block.table.cost_info') as 'forth_object'\G*************************** 1. row ***************************forth_object: {"eval_cost":"0.20","read_cost":"0.00","prefix_cost":"0.00","data_read_per_join":"176"}1 row in set (0.00 sec)


  • 那我们把这个JSON 串转换为表。

  • SELECT * FROM JSON_TABLE(@json_str1,

  • "$.query_block"

  • COLUMNS(

  • rowid FOR ORDINALITY,

  • NESTED PATH '$.table'

  • COLUMNS (

  • a1_1 varchar(100) PATH '$.key',

  • a1_2 varchar(100) PATH '$.ref[0]',

  • a1_3 varchar(100) PATH '$.filtered',

  • nested path '$.cost_info'

  • columns (

  • a2_1 varchar(100) PATH '$.eval_cost' ,

  • a2_2 varchar(100) PATH '$.read_cost',

  • a2_3 varchar(100) PATH '$.prefix_cost',

  • a2_4 varchar(100) PATH '$.data_read_per_join'

  • ),

  • a3 varchar(100) PATH '$.key_length',

  • a4 varchar(100) PATH '$.table_name',

  • a5 varchar(100) PATH '$.access_type',

  • a6 varchar(100) PATH '$.used_key_parts[0]',

  • a7 varchar(100) PATH '$.rows_examined_per_scan',

  • a8 varchar(100) PATH '$.rows_produced_per_join',

  • a9 varchar(100) PATH '$.key'

  • ),

  • NESTED PATH '$.cost_info'

  • columns (

  • b1_1 varchar(100) path '$.query_cost'

  • ),

  • c INT path "$.select_id"

  • )

  • ) AS tt;

  • +-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

  • | rowid | a1_1 | a1_2  | a1_3   | a2_1 | a2_2 | a2_3 | a2_4 | a3   | a4       | a5    | a6   | a7   | a8   | a9   | b1_1 | c    |

  • +-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

  • |     1 | id   | const | 100.00 | 0.20 | 0.00 | 0.00 | 176  | 8    | bigtable | const | id   | 1    | 1    | id   | NULL |    1 |

  • |     1 | NULL | NULL  | NULL   | NULL | NULL | NULL | NULL | NULL | NULL     | NULL  | NULL | NULL | NULL | NULL | 1.00 |    1 |

  • +-------+------+-------+--------+------+------+------+------+------+----------+-------+------+------+------+------+------+------+

  • 2 rows in set (0.00 sec)

  • 当然,JSON_table 函数还有其他的用法,我这里不一一列举了,详细的参考手册。

    请点击输入图片描述

    请点击输入图片描述

    修改回答

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式