高数函数极限这一步是怎么出来的 10
展开全部
令x=tant,t∈(-π/2,π/2),则√(1+x²)=sect,dx=sec²tdt
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫(sec²t-1)*sectdt
=sect*tant-∫sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫(sec²t-1)*sectdt
=sect*tant-∫sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
追问
???你在说些啥
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询