高数函数极限这一步是怎么出来的 10
1个回答
展开全部
令x=tant,t∈(-π/2,π/2),则√(1+x²)=sect,dx=sec²tdt
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫(sec²t-1)*sectdt
=sect*tant-∫sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫(sec²t-1)*sectdt
=sect*tant-∫sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
追问
???你在说些啥
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询