线性代数行列式,求解
1个回答
展开全部
设原来的行列式=D_n, 利用C(n,k)=C(n-1,k)+C(n-1,k-1),先给第n行减去第n-1行,, 再给第n-1行减去第n-2行,...,最后给第2行减去第1行,于是第1列里只有第1个数是C(m,0)不是零,而除去第1行和第1列后的n-1阶行列式刚好是D_(n-1), 于是D_n=C(m,0)*D_(n-1),于是D_n=(C(m,0))^(n-1)*D_1, 而D_1=C(m,0), 所以D_n=(C(m,0))^n=1.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询