第九题,谢谢
1个回答
展开全部
证:
mn=(a^2+b^2)(c^2+d^2)
=a^2c^2+a^2d^2+b^2c^2+b^2d^2
=(a^2c^2+2abcd+b^2d^2)+(a^2d^2-2abcd+b^2c^2)
=(ac+bd)^2+(ad-bc)^2
或者
mn=(a^2+b^2)(c^2+d^2)
=a^2c^2+a^2d^2+b^2c^2+b^2d^2
=(a^2c^2-2abcd+b^2d^2)+(a^2d^2+2abcd+b^2c^2)
=(ac-bd)^2+(ad+bc)^2
两种形式
mn=(a^2+b^2)(c^2+d^2)
=a^2c^2+a^2d^2+b^2c^2+b^2d^2
=(a^2c^2+2abcd+b^2d^2)+(a^2d^2-2abcd+b^2c^2)
=(ac+bd)^2+(ad-bc)^2
或者
mn=(a^2+b^2)(c^2+d^2)
=a^2c^2+a^2d^2+b^2c^2+b^2d^2
=(a^2c^2-2abcd+b^2d^2)+(a^2d^2+2abcd+b^2c^2)
=(ac-bd)^2+(ad+bc)^2
两种形式
追问
哦,谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询