将函数f(x)=1/x 展开成x-3的幂级数是2,∞>n(n-1)x^(n-2)], -1 < x < 1。
解答过程如下:
f(x) = 1/(1-x)^3
= (1/2)[1/(1-x)^2]'
= (1/2)[1/(1-x)]''
= (1/2)[∑<n=0,∞du>x^n]''
= (1/2)[∑<n
=2,∞>n(n-1)x^(n-2)], -1 < x < 1
扩展资料
函数展开成幂级数的一般方法是:
1、直接展开
对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。
2、通过变量代换来利用已知的函数展开式
例如 sin2x 的展开式就可以通过将 sinx 的展开式里的 x 全部换成 2x 而得到。
3、通过变形来利用已知的函数展开式
例如要将 1/(1+x) 展开成 x−1 的幂级数,我们就可以将函数写成 x−1 的函数,然后利用 1/(1+x) 的幂级数展开式。
4、通过逐项求导、逐项积分已知的函数展开式
例如 coshx=(sinhx)′,它的幂级数展开式就可以通过将sinhx 的展开式逐项求导得到。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要我们确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。