1x2+2x3+3x4+.....+n(n+1)=_____(n为自然数)
1个回答
展开全部
1*2+2*3+。。。。+N(N+1)
=1*2+2*3+。。。。+(N^2+N)
=(1+2+3+...+N)+(1^2+2^2+...+N^2)
=[N(N+1)/2]+[N(N+1)(2N+1)/6]
=N(N+1)(N+2)/3
1*2*3+2*3*4+。。。。。+N(N+1)*(N+2)
=1*2*3+2*3*4+。。。。。+(N^3+3N^2+2N)
=(1^3+2^3+...+N^3)+3(1^2+2^2+...+N^2)+2(1+2+...+N)
=[N(N+1)/2]^2+[N(N+1)(2N+1)/2]+N(N+1)
=(N+1)(N^3+3N^2+6N)/4
=1*2+2*3+。。。。+(N^2+N)
=(1+2+3+...+N)+(1^2+2^2+...+N^2)
=[N(N+1)/2]+[N(N+1)(2N+1)/6]
=N(N+1)(N+2)/3
1*2*3+2*3*4+。。。。。+N(N+1)*(N+2)
=1*2*3+2*3*4+。。。。。+(N^3+3N^2+2N)
=(1^3+2^3+...+N^3)+3(1^2+2^2+...+N^2)+2(1+2+...+N)
=[N(N+1)/2]^2+[N(N+1)(2N+1)/2]+N(N+1)
=(N+1)(N^3+3N^2+6N)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询