使用matlab lsqcurvefit的问题?
非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。今进行曲线拟合,求x使得输出的如下最小二乘表达式成立。
非线性曲线拟合是已知输入向量xdata和输出向量ydata,并且知道输入与输出的函数关系为ydata=F(x, xdata),但不知道系数向量x。今进行曲线拟合,求x使得输出的如下最小二乘表达式成立:
min Σ(F(x,xdatai)-ydatai)^2
函数 lsqcurvefit
格式 x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(…)
[x,resnorm,residual] = lsqcurvefit(…)
[x,resnorm,residual,exitflag] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…)
参数说明:
x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;
lb、ub为解向量的下界和上界lb≤x≤ub,若没有指定界,则lb=[ ],ub=[ ];
options为指定的优化参数;
fun为待拟合函数,计算x处拟合函数值,其定义为 function F = myfun(x,xdata)resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和;
residual=fun(x,xdata)-ydata,即在x处的残差;
exitflag为终止迭代的条件;
output为输出的优化信息;
lambda为解x处的Lagrange乘子;
jacobian为解x处拟合函数fun的jacobian矩阵。
function y=yuww(x,xd) % 保存为yuww.m 文件,反正不要是fit
y=50*x(1)./(x(1)-x(2))*(exp(-x(2)*xd)-exp(-x(1)*xd));
--------------------------------------------------------------------------------------
运行以下:
clear;clc
x=1:31;
y=[1 1 8 14 30 11 8 7 17 11 5 4 0 8 7 2 4 2 5 2 1 6 2 4 5 10 1 3 3 0 6];
c0=[2,0.1]; %初始值
c=lsqcurvefit('yuww',c0,x,y)
plot(x,y,'r*-')
hold on
plot(x,yuww(c,x))