共轭复根怎么求?
具体如图:
根据一元二次方程求根公式韦达定理:
,当 时,方程无实根,但在复数范围内有2个复根。复根的求法为 (其中 是复数, )。
由于共轭复数的定义是形如 的形式,称 与 为共轭复数。
另一种表达方法可用向量法表达: , 。其中 ,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在 时的两根为共轭复根。
扩展资料:
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
参考资料来源:百度百科——共轭复根
2024-12-11 广告
共轭复根是一对特殊根。指多项式或代数方程的一类成对出现的根。若非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
扩展资料
相关应用:
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。
这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
参考资料来源:百度百科-共轭复根
一元二次方程的一般形式如下:
确定判别式,计算Δ(希腊字母,音译为戴尔塔)。
若Δ>0,该方程在实数域内有两个不相等的实数根:;
若Δ=0,该方程在实数域内有两个相等的实数根:
若Δ<0,该方程在实数域内无解,但在虚数域内有两个共轭复根,为
虚数的概念
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
共轭复数概念
共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。同时, 复数zˊ称为复数z的复共轭(complex conjugate).
比如说根号里面的是-1,那么就是+i和-i这两根.