2个回答
展开全部
∫(0,1)ln(1+x^2)dx
=xln(1+x^2)|(0,1)-∫(0,1)x* 1/(1+x^2) * 2xdx
=ln2-2∫(0,1) [(x^2+1)-1]/(1+x^2) dx
=ln2-2∫(0,1)[1-1/(1+x^2)]dx
=ln2-2+2arctanx|(0,1)
=ln2-2+π/2=ln2+(π-4)/2.
∴e^[∫(0,1)ln(1+x^2)dx]
=e^[ln2+(π-4)/2]
=e^ln2 e^[(π-4)/2] =2e^[(π-4)/2] .
=xln(1+x^2)|(0,1)-∫(0,1)x* 1/(1+x^2) * 2xdx
=ln2-2∫(0,1) [(x^2+1)-1]/(1+x^2) dx
=ln2-2∫(0,1)[1-1/(1+x^2)]dx
=ln2-2+2arctanx|(0,1)
=ln2-2+π/2=ln2+(π-4)/2.
∴e^[∫(0,1)ln(1+x^2)dx]
=e^[ln2+(π-4)/2]
=e^ln2 e^[(π-4)/2] =2e^[(π-4)/2] .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询