复变函数请问(1+i)^(1-i)等于多少?就是(1+i)的(1-i)次方等于多少?

 我来答
教育小百科达人
2020-07-12 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:477万
展开全部

z = e^(iθ) = cosθ + isinθ = x + iy

zⁿ = e^(inθ) = cos(nθ) + isin(nθ) = (x + iy)ⁿ

arg(z) = arctan(y/x)

|z| = √(x² + y²)

∵arg(z) = - π/4

|z| = √(1² + (- 1)²) = √2

∴1 - i

= √2e^(- iπ/4)

= √2[cos(- π/4) + isin(- π/4)]

= √2[cos(π/4) - isin(π/4)]

∵arg(z) = - π/4

|z|^i = (1² + 1²)^(i/2) = 2^(i/2)

∴(1 - i)^i

= 2^(i/2) • e^(i • i • - π/4)

= 2^(i/2) • e^(π/4)

= 2^(i/2)[cos(π/4) + isin(π/4)]

扩展资料:

(a+i*b)^(a+i*b)和(r*(cosa+i*cosb))^(r*(cosa+i*cosb))结果的一般形式

解决这个问题主要是运用公式w^z=exp(z*Lnw)=exp{z*[i*(arg(w)+2kπ)+ln|w|]}

其中w、z是复数,注意Lnw是多值函数

Dilraba学长
高粉答主

2019-10-21 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411057

向TA提问 私信TA
展开全部

答案为e^(∏/4)^(-1)(cos(ln2/2)+isin(ln2/2))(∏为圆周率)

解题过程如下:

(1+i)*i

形如a*b=e*blna

所以原式

(1+i)^i

=[e^(ln(1+i))]^i

=e^(i*ln(1+i))

=e^[i*ln(2^(1/2)(cos∏/4+i*sin∏/4))]

=e^[i*(ln2/2+i*∏/4)]

因为e^(i∏/4)=cos∏/4+isin∏/4 所以:ln(cos∏/4+isin∏/4)=i∏/4

=e^(-∏/4+iln2/2)

=e^(∏/4)^(-1)(cos(ln2/2)+isin(ln2/2))

(∏为圆周率)

以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就是研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。

扩展资料

复变函数证明:

设ƒ(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|ƒ(z)-ƒ(α)|<ε恒成立,则称ƒ(z)在α处是连续的,如果在A上处处连续,则称为A上的连续函数或连续映射。

设ƒ是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|ƒ(z1)-ƒ(z2)|<ε恒成立。这个性质称为ƒ(z)在A上的一致连续性或均匀连续性。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-12-28
展开全部

答案如下图所示:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
楼谋雷丢回来了
2019-10-21 · TA获得超过1万个赞
知道大有可为答主
回答量:2024
采纳率:80%
帮助的人:232万
展开全部

望采纳

追答

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式