设在[0,1]上f "(x)>0,则f '(0),f '(1),f(1)-f(0)的比较

为什么f"(x)>0f'(x)单调增加... 为什么f "(x)>0 f '(x)单调增加 展开
 我来答
热点那些事儿
高粉答主

2020-11-23 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:213万
展开全部

因为f(x)在[0,1]上一阶可导,由Lagrange中值定理,f(1)-f(0) = f'(ξ)(1-0)=f'(ξ)。其中ξ∈[0,1],又由于f''(x)>0 => f'(x)在[0,1]上为单调递增函数,于是有f'(1) > f(1)-f(0)=f'(ξ) > f'(0)。

拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

扩展资料

拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。

对于曲线运动在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速率等于这个过程中的平均速率。

拉格朗日中值定理在柯西的微积分理论系统中占有重要的地位。可利用拉格朗日中值定理对洛必达法则进行严格的证明,并研究泰勒公式的余项。从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分。

百度网友9d59776
2019-01-28 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2万
采纳率:72%
帮助的人:7908万
展开全部
根据f′(x)﹥0,则f(x)递增。所以f′′(x)>0,则f′(x)递增。
解:∵x∈[0,1],f′′(x)>0
∴f′(x)递增
∵f(1)-f(0)=f′(ξ)(1-0)
∴f(1)-f(0)=f′(ξ) (ξ∈(1,0))
∵0<ξ<1
∴f′(0)<f′(ξ)<f′(1)
即f′(0)<f(1)-f(0)<f′(1)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-09-23 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1662万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
豆贤静
2019-01-28 · 知道合伙人教育行家
豆贤静
知道合伙人教育行家
采纳数:1255 获赞数:4848
爱好数学的学生。

向TA提问 私信TA
展开全部


如图。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式