5个回答
展开全部
不定积分是高数计算问题中的难点,也是重点,因为还关系到定积分的计算。要想提高积分能力,我认为要注意以下几点:(1)要熟练掌握导数公式。因为求导与求积是逆运算,导数特别是基本初等函数的导数公式掌握好了,就为积分打下了良好的基础。(2)两类换元法及分部积分法中,第一类换元法是根本,要花时间和精力努力学好。(3)积分的关键不在懂不懂,而在能不能记住。一种类型的题目做过,下次碰到还会不会这很重要。(4)如果是初学者,那要静心完成课本上的习题。如果是考研级别,那更要做大量的训练题并且要善于总结。以上几点建议,希望能有一定的作用
展开全部
解:x-√x=x-√x+(1/2)^2-1/4=(√x-1/2)^2-1/4;
令t=√x-1/2; x=(t+1/2)^2;dx=2(t+1/2)dt;
原式=∫[1-1/(t+1/2)^4]√(t^2-1/4)*2(t+1/2)dt
=∫[2√[(t+1/2)/(t-1/2)]-2√(t-1/2)/√(t+1/2)^5]*dt
=2∫{√[(t-1/2)+1]/√(t-1/2)-√[(t+1/2)-1]/√(t+1/2)^5]*dt;
=4∫√[(t-1/2)+1]d√[(t-1/2)+1]-2∫{√[(t-1/2)+1-1]/√[(t-1/2)+1]^5}dt
=4*(2/3)√[(t-1/2)+1]^3-2∫1/(t+1/2)^2+1/√(t+1/2)^5}dt
=(8/3)√(t+1/2)^3+2/(t+1/2)+4∫1/√(t+1/2)^4d√[(t+1/2)
=(8/3)√(t+1/2)^3+2/(t+1/2)-4*(-2/3)[1/√(t+1/2)^3+C
=(8/3)√(√x)^3+2/√x+[8/3√(√x)^3]+C
=(8/3)[x^(3/4)+x^(-3/4)]+2/√x+C
令t=√x-1/2; x=(t+1/2)^2;dx=2(t+1/2)dt;
原式=∫[1-1/(t+1/2)^4]√(t^2-1/4)*2(t+1/2)dt
=∫[2√[(t+1/2)/(t-1/2)]-2√(t-1/2)/√(t+1/2)^5]*dt
=2∫{√[(t-1/2)+1]/√(t-1/2)-√[(t+1/2)-1]/√(t+1/2)^5]*dt;
=4∫√[(t-1/2)+1]d√[(t-1/2)+1]-2∫{√[(t-1/2)+1-1]/√[(t-1/2)+1]^5}dt
=4*(2/3)√[(t-1/2)+1]^3-2∫1/(t+1/2)^2+1/√(t+1/2)^5}dt
=(8/3)√(t+1/2)^3+2/(t+1/2)+4∫1/√(t+1/2)^4d√[(t+1/2)
=(8/3)√(t+1/2)^3+2/(t+1/2)-4*(-2/3)[1/√(t+1/2)^3+C
=(8/3)√(√x)^3+2/√x+[8/3√(√x)^3]+C
=(8/3)[x^(3/4)+x^(-3/4)]+2/√x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令x=(sec²α)² α∈[0,π/2)
原式=∫(1-(cos²α)^4)secαtanαd(sec²α)²
=∫(1-(cos²α)^4)secαtanα4sec³αsecαtanαdα
=4∫(1-(cos²α)^4)secαtanαsec³αsecαtanαdα
=4∫[(secα)^5 tan²α-sin²αcosα]dα
=4∫(secα)^5 tan²αdα-4∫sin²αdsinα
=4/5∫tanαd(secα)^5-4∫sin²αdsinα
=4/5[tanα(secα)^5-∫(secα)^7dα]-4/3 sin³α+C ①
∫(secα)^7dα
=∫(secα)^5dtanα
=tanα(secα)^5-∫tanαd(secα)^5
=tanα(secα)^5-5∫[(secα)^5 (sec²α -1)]dα
∫(secα)^7dα=1/6[tanα(secα)^5+5∫(secα)^5 dα]
同理可得
∫(secα)^5dα=1/4[tanαsec³α+3∫sec³αdα]
∫sec³αdα=1/2[tanαsecα+∫secαdα]
=1/2[tanαsecα+㏑|secα+tanα|] + C
代入①式得原式
=2/3 tanα(secα)^5-1/6sec³αtanα-1/4secαtanα-1/4㏑|secα+tanα|-4/3 sin³α+ C
secα=x¼
cosα=1/x¼
sinα=(1-1/x½)½
tanα=x¼(1-1/x½)½
原式=(1-1/x½)½(2/3(x½)³-1/6x-1/4x½)-1/4㏑|x¼+x¼(1-1/x½)½| -4/3[(1-1/x½)½]³+ C
=(x-x½)½ (2x/3-1/6x½-1/4)-1/4㏑|x¼+(x-x½)½ /x¼| -4/3[(1-1/x½)½]³ + C
原式=∫(1-(cos²α)^4)secαtanαd(sec²α)²
=∫(1-(cos²α)^4)secαtanα4sec³αsecαtanαdα
=4∫(1-(cos²α)^4)secαtanαsec³αsecαtanαdα
=4∫[(secα)^5 tan²α-sin²αcosα]dα
=4∫(secα)^5 tan²αdα-4∫sin²αdsinα
=4/5∫tanαd(secα)^5-4∫sin²αdsinα
=4/5[tanα(secα)^5-∫(secα)^7dα]-4/3 sin³α+C ①
∫(secα)^7dα
=∫(secα)^5dtanα
=tanα(secα)^5-∫tanαd(secα)^5
=tanα(secα)^5-5∫[(secα)^5 (sec²α -1)]dα
∫(secα)^7dα=1/6[tanα(secα)^5+5∫(secα)^5 dα]
同理可得
∫(secα)^5dα=1/4[tanαsec³α+3∫sec³αdα]
∫sec³αdα=1/2[tanαsecα+∫secαdα]
=1/2[tanαsecα+㏑|secα+tanα|] + C
代入①式得原式
=2/3 tanα(secα)^5-1/6sec³αtanα-1/4secαtanα-1/4㏑|secα+tanα|-4/3 sin³α+ C
secα=x¼
cosα=1/x¼
sinα=(1-1/x½)½
tanα=x¼(1-1/x½)½
原式=(1-1/x½)½(2/3(x½)³-1/6x-1/4x½)-1/4㏑|x¼+x¼(1-1/x½)½| -4/3[(1-1/x½)½]³+ C
=(x-x½)½ (2x/3-1/6x½-1/4)-1/4㏑|x¼+(x-x½)½ /x¼| -4/3[(1-1/x½)½]³ + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
关于定积分的计算。要想提高积分能力,我认为(1)要熟练掌握导数公式。因为求导与求积是逆运算,导数特别是基本初等函数的导数公式掌握好了,就为积分打下了良好的基础。(2)两类换元法及分部积分法中,第一类换元法是根本,要花时间和精力努力学好。(3)积分的关键不在懂不懂,而在能不能记住。一种类型的题目做过,下次碰到还会不会这很重要。(4)如果是初学者,那要静心完成课本上的习题。如果是考研级别,那更要做大量的训练题并且要善于总结。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询