2个回答
展开全部
令x=t^6,则dx=6t^5dt
原式=∫(1,2^(1/6)) (t^2)/[t^6*(t^3+t^2)]*6t^5dt
=∫(1,2^(1/6)) 6/(t^2+t)
=6∫(1,2^(1/6)) [1/t-1/(t+1)]dt
=6[ln|t|-ln|t+1|]|(1,2^(1/6))
=6*[(1/6)*ln2-ln|2^(1/6)+1|+ln2]
=7ln2-6ln[2^(1/6)+1]
原式=∫(1,2^(1/6)) (t^2)/[t^6*(t^3+t^2)]*6t^5dt
=∫(1,2^(1/6)) 6/(t^2+t)
=6∫(1,2^(1/6)) [1/t-1/(t+1)]dt
=6[ln|t|-ln|t+1|]|(1,2^(1/6))
=6*[(1/6)*ln2-ln|2^(1/6)+1|+ln2]
=7ln2-6ln[2^(1/6)+1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询