高等数学基础,利用分部积分法求式子
展开全部
∫ (arctanx)/[x^2.(1+x^2)] dx
=∫ (arctanx)/x^2 dx - ∫ (arctanx)/(1+x^2) dx
=-∫ (arctanx) d(1/x) - (1/2)∫ d(arctanx)^2
=-(arctanx)/x + ∫ dx/[x(1+x^2)] - (1/2)(arctanx)^2
=-(arctanx)/x - (1/2)(arctanx)^2 + ∫ [1/x- x/(1+x^2)]dx
=-(arctanx)/x - (1/2)d(arctanx)^2 + ln|x| - (1/2)ln|1+x^2| + C
consider
1/[x(1+x^2)] ≡ A/x+ (Bx+C)/(1+x^2)
=>
1 ≡ A(1+x^2)+ x(Bx+C)
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x , => C=0
1/[x(1+x^2)] ≡ 1/x- x/(1+x^2)
=∫ (arctanx)/x^2 dx - ∫ (arctanx)/(1+x^2) dx
=-∫ (arctanx) d(1/x) - (1/2)∫ d(arctanx)^2
=-(arctanx)/x + ∫ dx/[x(1+x^2)] - (1/2)(arctanx)^2
=-(arctanx)/x - (1/2)(arctanx)^2 + ∫ [1/x- x/(1+x^2)]dx
=-(arctanx)/x - (1/2)d(arctanx)^2 + ln|x| - (1/2)ln|1+x^2| + C
consider
1/[x(1+x^2)] ≡ A/x+ (Bx+C)/(1+x^2)
=>
1 ≡ A(1+x^2)+ x(Bx+C)
x=0, => A=1
coef. of x^2
A+B=0
B=-1
coef. of x , => C=0
1/[x(1+x^2)] ≡ 1/x- x/(1+x^2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询