let
t-1= √3tanu
dt= √3(secu)^2 du
∫ (2t-1)/(t^2-2t+4) dt
=∫ (2t-2)/(t^2-2t+4) dt +∫ dt/(t^2-2t+4)
=ln|t^2-2t+4| + ∫ dt/[(t-1)^2 +3]
=ln|t^2-2t+4| + ∫ √3(secu)^2 du/[3(secu)^2]
=ln|t^2-2t+4| + (√3/3)u + C
=ln|t^2-2t+4| + (√3/3)arctan[(t-1)/√3] + C
f(x) =∫(0->x) (2t-1)/(t^2-2t+4) dt
f'(x) =(2x-1)/(x^2-2x+4)
f'(x) = 0
x=1/2
f'(1/2+) >0, f'(1/2)-<0
x=1/2 (min)
min f(x)
=f(1/2)
=∫(0->1/2) (2t-1)/(t^2-2t+4) dt
=[ ln|t^2-2t+4| + (√3/3)arctan[(t-1)/√3] ] |(0->1/2)
=[ ln(13/4) -(√3/3)arctan(√3/6) ] -[ ln4 -(√3/9)π ]
=ln13-4ln2 +(√3/9)π -(√3/3)arctan(√3/6)
f(0)=0
f(1) =∫(0->1) (2t-1)/(t^2-2t+4) dt
=[ ln|t^2-2t+4| + (√3/3)arctan[(t-1)/√3] ] |(0->1)
= ln3 -[ ln4 - (√3/9)π]
=ln3 -ln34 +(√3/9)π
max f(x)= f(1) =ln3 -ln34 +(√3/9)π
当x>0,导数大于0,得出x>0为增函数
最小值为x=0,f(0)=0,最大值为x=1
在 [0, 1] 上 , f'(x) > 0, 函数单调增加。
f(0) = 0,
f(1) = ∫<0, 1> (2t+1)dt/(t^2-2t+4)
= ∫<0, 1> [2(t-1)+3]d(t-1)/[(t-1)^2+3]
= [ln{(t-1)^2+3}+√3arctan{(x-1)/√3}]<0, 1>
= ln3 + 0 - ln4 + √3arctan(1/√3) = π√3/6 + ln3 - 2ln2
最小值 f(0) = 0,最大值 f(1) = π√3/6 + ln3 - 2ln2
f'(x)=(2x+1)/(x²-2x+4)
=(2x+1)/((x-1)²+3)
当x∈[0,1]时
f(x)>0
所以f(x)在[0,1]上单调递增
因此f(x)在[0,1]上的最小值为f(0)=0(此时积分上下限相同)
最大值为
f(1)=∫(2t+1)dt/(t²-2t+4) (积分范围[0,1])
=∫(2t-2)dt/(t²-2t+4)+∫3dt/((t-1)²+3)(积分范围[0,1])
=∫d(t²-2t+4)/(t²-2t+4)+3∫d(t-1)/((t-1)²+3)(积分范围[0,1])
=ln|t²-2t+4|+√3arctan[(t-1)/√3](积分范围[0,1])
=ln3-ln4+√3π/6