2个回答
展开全部
xy'-ylny =0
xy'=ylny
∫dy/(ylny) = ∫dx/x
ln|lny| = ln|x| +C'
lny =e^C'. x
y = e^[e^C'. x]
=C.e^x
xy'=ylny
∫dy/(ylny) = ∫dx/x
ln|lny| = ln|x| +C'
lny =e^C'. x
y = e^[e^C'. x]
=C.e^x
追问
第二部到第三部看不太懂阿
追答
xy'-ylny =0
xy'=ylny
x.dy/dx =ylny
∫dy/(ylny) = ∫dx/x
∫ dlny/lny =∫dx/x
ln|lny| = ln|x| +C'
lny =e^C'. x
y = e^[e^C'. x]
=C.e^x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询