求定积分,如图
展开全部
∫(0->1) x^3.√(1+4x^2) dx
=(1/4)∫(0->1) x(1+4x^2) .√(1+4x^2) dx -(1/4)∫(0->1) x.√(1+4x^2) dx
=(1/4)∫(0->1) x. (1+4x^2)^(3/2) dx -(1/4)∫(0->1) x.√(1+4x^2) dx
=(1/32)∫(0->1) (1+4x^2)^(3/2) d(1+4x^2) - (1/32)∫(0->1) √(1+4x^2) d(1+4x^2)
=(1/80) [(1+4x^2)^(5/2)]|(0->1) - (1/48)[ (1+4x^2)^(3/2)]|(0->1)
=(1/80) [ 5^(5/2) -1 ] -(1/48)[ 5^(3/2) -1]
=(1/80)(25√5 -1 ) -(1/48)( 5√5 -1)
=(5/24)√5 + 1/120
=(1/4)∫(0->1) x(1+4x^2) .√(1+4x^2) dx -(1/4)∫(0->1) x.√(1+4x^2) dx
=(1/4)∫(0->1) x. (1+4x^2)^(3/2) dx -(1/4)∫(0->1) x.√(1+4x^2) dx
=(1/32)∫(0->1) (1+4x^2)^(3/2) d(1+4x^2) - (1/32)∫(0->1) √(1+4x^2) d(1+4x^2)
=(1/80) [(1+4x^2)^(5/2)]|(0->1) - (1/48)[ (1+4x^2)^(3/2)]|(0->1)
=(1/80) [ 5^(5/2) -1 ] -(1/48)[ 5^(3/2) -1]
=(1/80)(25√5 -1 ) -(1/48)( 5√5 -1)
=(5/24)√5 + 1/120
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询