如何证明n的n次方根的极限为1

 我来答
钟实印绸
2020-04-02 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.2万
采纳率:32%
帮助的人:970万
展开全部
你可以假设1+a>n的根号n次方根.然后同为正数,等价于(1+a)n次方大于n.建立方程f(x)=(1+a)x次方,g(x)=x,因为x=0时,f(x)>g(x),然后求导数,x乘以(1
+a)(x-1次方)大于1.所以,f(x)
>g(x)恒成立.所...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式