偏导数全微分有关问题
1个回答
展开全部
解:
fx(0,0)
=lim(Δx→0)
[f(Δx,0)-f(0,0)]/Δx
=lim(Δx→0)
|Δx|φ(Δx,0)/Δx
=lim(Δx→0)
±φ(Δx,0)
上式成立,必须:
lim(Δx→0+)
φ(Δx,0)
=
lim(Δx→0-)
-φ(Δx,0)
只能是:
lim(Δx→0)
φ(Δx,0)=0
同理:
fy(0,0)
=lim(Δx→0)
±φ(0,Δy)
lim(Δy→0)
φ(0,Δy)=0
综上,若要fx(0,0),fy(0,0)存在,必须是:φ(0,0)=0
2)满足1)时,fx(0,0)=fy(0,0)=0
∴
Δf
=f(Δx+0,Δy+0)-f(0,0)
=fx(0,0)Δx+fy(0,0)Δy+o(√Δx²+Δy²)
=o(√Δx²+Δy²)
lim(Δx,Δy→0)
o(√Δx²+Δy²)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|φ(Δx,Δy)/√(Δx²+Δy²)
∵
lim(Δx,Δy→0)
φ(Δx,Δy)
=0,于是:
φ(Δx,Δy)
=o'[√(Δx²+Δy²)],其中o'[√(Δx²+Δy²)]是关于√(Δx²+Δy²)的高阶无穷小,即:
lim(Δx,Δy→0)
o'[√(Δx²+Δy²)]/√(Δx²+Δy²)
=0
因此:
lim(Δx,Δy→0)
o(√Δx²+Δy²)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|φ(Δx,Δy)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|·0
=0
∴可微
fx(0,0)
=lim(Δx→0)
[f(Δx,0)-f(0,0)]/Δx
=lim(Δx→0)
|Δx|φ(Δx,0)/Δx
=lim(Δx→0)
±φ(Δx,0)
上式成立,必须:
lim(Δx→0+)
φ(Δx,0)
=
lim(Δx→0-)
-φ(Δx,0)
只能是:
lim(Δx→0)
φ(Δx,0)=0
同理:
fy(0,0)
=lim(Δx→0)
±φ(0,Δy)
lim(Δy→0)
φ(0,Δy)=0
综上,若要fx(0,0),fy(0,0)存在,必须是:φ(0,0)=0
2)满足1)时,fx(0,0)=fy(0,0)=0
∴
Δf
=f(Δx+0,Δy+0)-f(0,0)
=fx(0,0)Δx+fy(0,0)Δy+o(√Δx²+Δy²)
=o(√Δx²+Δy²)
lim(Δx,Δy→0)
o(√Δx²+Δy²)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|φ(Δx,Δy)/√(Δx²+Δy²)
∵
lim(Δx,Δy→0)
φ(Δx,Δy)
=0,于是:
φ(Δx,Δy)
=o'[√(Δx²+Δy²)],其中o'[√(Δx²+Δy²)]是关于√(Δx²+Δy²)的高阶无穷小,即:
lim(Δx,Δy→0)
o'[√(Δx²+Δy²)]/√(Δx²+Δy²)
=0
因此:
lim(Δx,Δy→0)
o(√Δx²+Δy²)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|φ(Δx,Δy)/√(Δx²+Δy²)
=lim(Δx,Δy→0)
|Δx-Δy|·0
=0
∴可微
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询