求数列的通项公式的方法

 我来答
光让招莺
2020-05-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:1975万
展开全部
构造法求数列的通项公式
在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。
构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.
供参考。
1、构造等差数列或等比数列
由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.
例1
设各项均为正数的数列
的前n项和为Sn,对于任意正整数n,都有等式:
成立,求
的通项an.
解:



,∵
,∴
.


是以2为公差的等差数列,且
.


例2
数列
中前n项的和
,求数列的通项公式
.
解:∵

当n≥2时,


,则
,且

是以
为公比的等比数列,


.
2、构造差式与和式
解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.
例3

是首项为1的正项数列,且
,(n∈N*),求数列的通项公式an.
解:由题设得
.



,∴
.


.
例4
数列
中,
,且
,(n∈N*),求通项公式an.
解:∵


(n∈N*)
3、构造商式与积式
构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.
例5
数列
中,
,前n项的和
,求
.
解:





4、构造对数式或倒数式
有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.
例6
设正项数列
满足

(n≥2).求数列
的通项公式.
解:两边取对数得:

,设
,则
是以2为公比的等比数列,
.



已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东门士恩储子
2020-05-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:1190万
展开全部
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的检验,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键。
  求数列通项公式常用以下几种方法:
  一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
  例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
  解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
  二、已知数列的前n项和,用公式
  S1 (n=1)
  Sn-Sn-1 (n2)
  例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
  (A) 9 (B) 8 (C) 7 (D) 6
  解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
  此类题在解时要注意考虑n=1的情况。
  三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
  例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
  解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
  再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
  - (n=1)
  - (n2)
  四、用累加、累积的方法求通项公式
  对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
  例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
  解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
  又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
  又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用构造数列方法求通项公式
  题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
  例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
  (1)求{an}通项公式 (2)略
  解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
  ∴{an--}是首项为a1--,公比为--1的等比数列。
  由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-
  又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。
  证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)
  由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,
  所以数列{an-n}是首项为1,公比为4的等比数列。
  若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
  又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
  解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1
  解题方略
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式