初3 的数学证明题
5个回答
展开全部
在BC上取一点E,使BE=BA,连接DE
因为BD是∠ABC的平分线
所以∠ABD=EBD
而AB=EB,BD=BD
所以△ABD全等于△EBD(SAS)
所以∠ADB=∠EDB(全等三角形的对应角相等)
因为AB=AC.∠A=108°
所以∠ABC=∠ACB=36°
所以∠ABD=EBD=18°
所以∠ADB=∠EDB=180°-(108°+18°)=54°
故∠ADE=108°
所以∠CDE=72°
所以∠DEC=180°-(72°+36°)=72°
所以∠CDE=∠DEC
所以DC=EC
所以BC=BE+EC=AB+DC
故BC=AB+CD
因为BD是∠ABC的平分线
所以∠ABD=EBD
而AB=EB,BD=BD
所以△ABD全等于△EBD(SAS)
所以∠ADB=∠EDB(全等三角形的对应角相等)
因为AB=AC.∠A=108°
所以∠ABC=∠ACB=36°
所以∠ABD=EBD=18°
所以∠ADB=∠EDB=180°-(108°+18°)=54°
故∠ADE=108°
所以∠CDE=72°
所以∠DEC=180°-(72°+36°)=72°
所以∠CDE=∠DEC
所以DC=EC
所以BC=BE+EC=AB+DC
故BC=AB+CD
展开全部
证明:D,F是AB,CA的中点,所以DF∥=½BC,因为E是BC的中点,所以EC=½BC,
所以DF∥=EC,所以,四边形DECF是平行四边形,
因为AC=10,BC=14.所以四边形DECF=2(CF+EC)=2(5+7)=24
所以DF∥=EC,所以,四边形DECF是平行四边形,
因为AC=10,BC=14.所以四边形DECF=2(CF+EC)=2(5+7)=24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
周长为24.。。。10+14=24
根据中位线,可证平行四边形。得BE=DF
DE=AF
等量代换。
即可算出周长DE+EC+FC+DF=BE+EC+CF+AF=10+14=24
根据中位线,可证平行四边形。得BE=DF
DE=AF
等量代换。
即可算出周长DE+EC+FC+DF=BE+EC+CF+AF=10+14=24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AC交EF于O
在△ADE和△CBF中
AD=CB(平行四边形对边相等)
∠ADE=∠CBF
DE=BF
∴△ADE≌△CBF(S.A.S)
∴AE=CF
∠DAE=∠BCF
又∵∠DAC=∠BCA(两直线平行,内错角相等)
∵△ADE≌△CBF
AE=CF
∵∠EAC=∠DAC-∠DAE
∠FCA=∠BCA-∠BCF
∠DAE=∠BCF
∴∠FCA=∠DAE
∴在△EOF和△FCO中
∠FCA=∠DAE
∠EOA=∠COF(对顶角相等)
EA=CF
∴△EOF≌AFCO(A.A.S)
∴EO=OF
AO=OC
在△ADE和△CBF中
AD=CB(平行四边形对边相等)
∠ADE=∠CBF
DE=BF
∴△ADE≌△CBF(S.A.S)
∴AE=CF
∠DAE=∠BCF
又∵∠DAC=∠BCA(两直线平行,内错角相等)
∵△ADE≌△CBF
AE=CF
∵∠EAC=∠DAC-∠DAE
∠FCA=∠BCA-∠BCF
∠DAE=∠BCF
∴∠FCA=∠DAE
∴在△EOF和△FCO中
∠FCA=∠DAE
∠EOA=∠COF(对顶角相等)
EA=CF
∴△EOF≌AFCO(A.A.S)
∴EO=OF
AO=OC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
菱形的周长为20
所以边长=5
两邻角的比是1:2,他们又互补,
所以角为60°,120°
画2条对角线,得2个等边三角形,边长=5,面积=25√
3/4
菱形的面积=25√
3/2
所以边长=5
两邻角的比是1:2,他们又互补,
所以角为60°,120°
画2条对角线,得2个等边三角形,边长=5,面积=25√
3/4
菱形的面积=25√
3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询