用均值不等式证明~~
1个回答
展开全部
证:x属于【0,π/2】,所以sinx,cosx都属于【0,1】,所以√sinx+√cosx≥sin²x+cos²x=1,左边得证。
√sinx+√cosx≤√【2(sinx+cosx)】=√【2√2sin(x+π/4)】≤√(2√2)=2^(3/4),右边得证。所以不等式成立。证毕
√sinx+√cosx≤√【2(sinx+cosx)】=√【2√2sin(x+π/4)】≤√(2√2)=2^(3/4),右边得证。所以不等式成立。证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询