用均值不等式证明~~

 我来答
鄢耕顺英倩
2020-03-15 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1166万
展开全部
证:x属于【0,π/2】,所以sinx,cosx都属于【0,1】,所以√sinx+√cosx≥sin²x+cos²x=1,左边得证。
√sinx+√cosx≤√【2(sinx+cosx)】=√【2√2sin(x+π/4)】≤√(2√2)=2^(3/4),右边得证。所以不等式成立。证毕
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式