matlab中solve解方程组
2个回答
展开全部
原发布者:fukbsne57343
matlab解方程组lnx表示成log(x)而lgx表示成log10(x)1-exp(((log(y))/x^0.5)/(x-1))1、解方程最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=inv(A)*b—采用求逆运算解方程组; (2)x=A\B—采用左除运算解方程组PS:使用左除的运算效率要比求逆矩阵的效率高很多~例:x1+2x2=82x1+3x2=13>>A=[1,2;2,3];b=[8;13];>>x=inv(A)*bx=2.003.00 >>x=A\Bx=2.003.00;即二元一次方程组的解x1和x2分别是2和3。对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下:第一步:定义变量symsxyz...;第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。如:解二(多)元二(高)次方程组:x^2+3*y+1=0y^2+4*x+1=0解法如下:>>symsxy;>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');>>x=vpa(x,4);>>y=vpa(y,4);结果是:x=1.635+3.029*i1.635-3.029*i-.283-2.987y=1.834-3.301*i1.834+3.301*i-.3600-3.307。二元二次方程组,共4个实数根;还有的同学问,如何用matlab解高次方程组(非符号方程组)?举个例子好吗?解答如下:基本方法是:solve(s1,s2,…,sn,v1,v2,…,vn),即求表达式s1,s2,…,sn组
matlab解方程组lnx表示成log(x)而lgx表示成log10(x)1-exp(((log(y))/x^0.5)/(x-1))1、解方程最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=inv(A)*b—采用求逆运算解方程组; (2)x=A\B—采用左除运算解方程组PS:使用左除的运算效率要比求逆矩阵的效率高很多~例:x1+2x2=82x1+3x2=13>>A=[1,2;2,3];b=[8;13];>>x=inv(A)*bx=2.003.00 >>x=A\Bx=2.003.00;即二元一次方程组的解x1和x2分别是2和3。对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下:第一步:定义变量symsxyz...;第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。如:解二(多)元二(高)次方程组:x^2+3*y+1=0y^2+4*x+1=0解法如下:>>symsxy;>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');>>x=vpa(x,4);>>y=vpa(y,4);结果是:x=1.635+3.029*i1.635-3.029*i-.283-2.987y=1.834-3.301*i1.834+3.301*i-.3600-3.307。二元二次方程组,共4个实数根;还有的同学问,如何用matlab解高次方程组(非符号方程组)?举个例子好吗?解答如下:基本方法是:solve(s1,s2,…,sn,v1,v2,…,vn),即求表达式s1,s2,…,sn组
展开全部
一。用matlab
中的solve函数
>>syms
x
y;
%定义两个符号变量;
>>[x
,y]=solve('y=2*x+3','y=3*x-7');%定义一个
2x1
的数组,存放x,y
>>x
>>x=10.0000
>>y
>>y=23.0000
二。用matlab
中的反向斜线运算符(backward
slash)
分析:
方程组可化为
2*x-y=-3;
3*x-y=7;
AX=B
(*)
A=[2,-1;3,-1];
B=[-3,7];
X=A\B
%可以看成将(*)式左边都除以系数矩阵A
>>A=[2,-1;3,-1];
>>B=[-3,7];
>>X=A\b
X
=
10.0000
%
x
=
10.0000
23.0000
%
y
=
23.0000
中的solve函数
>>syms
x
y;
%定义两个符号变量;
>>[x
,y]=solve('y=2*x+3','y=3*x-7');%定义一个
2x1
的数组,存放x,y
>>x
>>x=10.0000
>>y
>>y=23.0000
二。用matlab
中的反向斜线运算符(backward
slash)
分析:
方程组可化为
2*x-y=-3;
3*x-y=7;
AX=B
(*)
A=[2,-1;3,-1];
B=[-3,7];
X=A\B
%可以看成将(*)式左边都除以系数矩阵A
>>A=[2,-1;3,-1];
>>B=[-3,7];
>>X=A\b
X
=
10.0000
%
x
=
10.0000
23.0000
%
y
=
23.0000
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询