若实数a、b、c满足条件1\a+1\b+1\c=1\a+b+c,则a、b、c满足什么条件?
1个回答
展开全部
方程:1/a+1/b+1/c=1/(a+b+c)
两边同时乘以abc
(abc不等于0)
得到:bc+ac+ab=abc/(a+b+c)
两边同时a+b+c
得到:a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=abc
a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0
而a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=(a+b)(b+c)(a+c)=0
所以:a+b,b+c,c+a中,至少有一个是0
两边同时乘以abc
(abc不等于0)
得到:bc+ac+ab=abc/(a+b+c)
两边同时a+b+c
得到:a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc=abc
a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0
而a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=(a+b)(b+c)(a+c)=0
所以:a+b,b+c,c+a中,至少有一个是0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询