
y=f(x)为奇函数,当x>0时f(x)=x(1-x),则当x<0时,f(x)=...
1个回答
展开全部
分析:由f(x)为奇函数且x>0时,f(x)=x(1-x),设x<0则有-x>0,可得f(x)=-f(-x)=x(1+x).
解答:解:∵f(x)为奇函数,x>0时,f(x)=x(1-x),∴当x<0时,-x>0,
f(x)=-f(-x)=-(-x(1+x))=x(1+x),
即x<0时,f(x)=x(1+x),
故答案为:x2+x.
点评:本题主要考查利用函数的奇偶性求对称区间上的解析式,要注意求哪区间上的解析式,要在哪区间上取变量.
解答:解:∵f(x)为奇函数,x>0时,f(x)=x(1-x),∴当x<0时,-x>0,
f(x)=-f(-x)=-(-x(1+x))=x(1+x),
即x<0时,f(x)=x(1+x),
故答案为:x2+x.
点评:本题主要考查利用函数的奇偶性求对称区间上的解析式,要注意求哪区间上的解析式,要在哪区间上取变量.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询