求解定积分,谢谢
1个回答
展开全部
令2x=tant,则dx=1/2(sect)^2dt
x=2, t=arctan4,
x=4, t=arctan8
带入:
∫(arctan4,arctan8) 1/2(sect)^3dt
而
∫sec³tdt
=∫sectdtant
=secttant-∫tantdsect
=sect*tant-∫sect*tan²tdt
=sect*tant-∫sect(sec²t-1)dt
=secttant-∫sec³tdt+∫sectdt
=secttant-∫sec³tdt+ln|sect+tant|
2∫sec³tdt=secttant+ln|sect+tant|
∫sec³tdt=(secttant+ln|sect+tant|)/2+C
所以原积分=
1/4*[8√65+ln(8+√65)-(√17*4+ln(4+√17)]
x=2, t=arctan4,
x=4, t=arctan8
带入:
∫(arctan4,arctan8) 1/2(sect)^3dt
而
∫sec³tdt
=∫sectdtant
=secttant-∫tantdsect
=sect*tant-∫sect*tan²tdt
=sect*tant-∫sect(sec²t-1)dt
=secttant-∫sec³tdt+∫sectdt
=secttant-∫sec³tdt+ln|sect+tant|
2∫sec³tdt=secttant+ln|sect+tant|
∫sec³tdt=(secttant+ln|sect+tant|)/2+C
所以原积分=
1/4*[8√65+ln(8+√65)-(√17*4+ln(4+√17)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询