31题,换元法求不定积分
1个回答
展开全部
解:
显然,本题可以用第一类换元法做
令x=sint,则:
dx=cost·dt
cost=√(1-x²)
原式=∫
x²/√(1-x²)
dx
=
∫
(sin²t)·cost
/
√(1-sin²z)
dz
=
∫
(sin²t)·cost
/
cost
dt
=
∫
(sin²t)·
dz
=
(1/2)∫
(1-cos2t)
dz
=
(1/2)[t-(1/2)sin2t)]
+
C
=
(1/2)t-(1/2)sintcost
+
C
=
(1/2)arcsinx
-
(1/2)x√(1-x²)
+
C
=
(1/2)[arcsinx
-
x√(1-x²)]
+
C
显然,本题可以用第一类换元法做
令x=sint,则:
dx=cost·dt
cost=√(1-x²)
原式=∫
x²/√(1-x²)
dx
=
∫
(sin²t)·cost
/
√(1-sin²z)
dz
=
∫
(sin²t)·cost
/
cost
dt
=
∫
(sin²t)·
dz
=
(1/2)∫
(1-cos2t)
dz
=
(1/2)[t-(1/2)sin2t)]
+
C
=
(1/2)t-(1/2)sintcost
+
C
=
(1/2)arcsinx
-
(1/2)x√(1-x²)
+
C
=
(1/2)[arcsinx
-
x√(1-x²)]
+
C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询