导数复合函数求导

 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
1.设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2.设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为D_。
M_∩Du≠_,那么对于M_∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction)。
百度网友19302e8
2020-11-28 · TA获得超过930个赞
知道小有建树答主
回答量:985
采纳率:65%
帮助的人:34.2万
展开全部
复合函数求导法则
链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x,g(x)=3x+3,g(f(x))就是一个复合函数,并且g′(f(x))=9。要注意f(x)的自变量x与g(x)的自变量x之间并不等同。

链式法则(chain rule)

若h(a)=f[g(x)]

则h'(a)=f'[g(x)]g'(x)

链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。"

中文名
链式法则
外文名
chain rule
适用领域范围
微积分
应用学科
数学
导数表导数公式求导公式大全导数公式大全复合函数求导公式函数求导公式大全导数公式及运算法则导函数公式大全复合函数求导公式大全导数的基本公式
证明

证法一

f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)

证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0

因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)

所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)

因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)

所以f(x)在点x0可导,且f'(x0)=H(x0)

设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)

又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)

于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)

因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且

F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)

证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)

证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)

当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu

但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。

又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得

dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx

又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0

则lim(Δx->0)α=0

最终有dy/dx=(dy/du)*(du/dx)

举例

设f(x)=3x,g(x)=3x+3,求g(f(x))的导数

可令t=f(x)=3x

则g(f(x))的导数=g′(t)f(x)′=(3t+3)′×(3x)′=3×3=9

明确在计算步骤中是对哪个变量求导是复合函数求导的关键

如在上面步骤中求g′(t)也即g′(f(x))时的变量是t,也即f(x)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
提分一百
2020-11-28 · TA获得超过1.5万个赞
知道大有可为答主
回答量:3.9万
采纳率:80%
帮助的人:2108万
展开全部

复合函数的求导公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式