1个回答
展开全部
设y=(1+x^2)^[1/(1-cosx)]
lny==ln{(1+x^2)^[1/(1-cosx)]}
=[1/(1-cosx)]*ln(1+x^2)
=ln(1+x^2)/(1-cosx)
lim(x→0)
lny
=lim(x→0)
ln(1+x^2)/(1-cosx)
【注:是0/0型,故运用洛必达法则,即对分子分母求导,】
=lim(x→0)
[ln(1+x^2)]'/(1-cosx)'
=lim(x→0)
[2x/(1+x^2)]/sinx
={lim(x→0)
[2/(1+x^2)]}*{lim(x→0)
x/sinx}
=2*{lim(x→0)
1/(sinx/x)}
=2/{lim(x→0)
sinx/x}
=2/1
=2
lim(x→0)(1+x²)^[1/(1-cosx)]=lim(x→0)
y
=lim(x→0)
e^(lny)
=e^{lim(x→0)
lny}
=e^2
lny==ln{(1+x^2)^[1/(1-cosx)]}
=[1/(1-cosx)]*ln(1+x^2)
=ln(1+x^2)/(1-cosx)
lim(x→0)
lny
=lim(x→0)
ln(1+x^2)/(1-cosx)
【注:是0/0型,故运用洛必达法则,即对分子分母求导,】
=lim(x→0)
[ln(1+x^2)]'/(1-cosx)'
=lim(x→0)
[2x/(1+x^2)]/sinx
={lim(x→0)
[2/(1+x^2)]}*{lim(x→0)
x/sinx}
=2*{lim(x→0)
1/(sinx/x)}
=2/{lim(x→0)
sinx/x}
=2/1
=2
lim(x→0)(1+x²)^[1/(1-cosx)]=lim(x→0)
y
=lim(x→0)
e^(lny)
=e^{lim(x→0)
lny}
=e^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询