设0<x<1,a、b都为大于零的常数,则a²/x+b²/1-x的最小值为
1个回答
展开全部
这里就要在分子分别凑出x和1-x
a²/x=(1-x+x)a²/x
=(1-x)a²/x+x*a²/x
=(1-x)a²/x+a²
b²/(1-x)
=(1-x+x)b²/(1-x)
=(1-x)b²(1-x)+x*b²/(1-x)
0<x<1,a>0,b>0
所以(1-x)a²/x>0,x*b²/(1-x)>0
所以(1-x)a²/x+x*b²/(1-x)>=2√[(1-x)a²/x*x*b²/(1-x)]=2ab
所以原式>=2ab+a²+b²
所以最小值=(a+b)²
a²/x=(1-x+x)a²/x
=(1-x)a²/x+x*a²/x
=(1-x)a²/x+a²
b²/(1-x)
=(1-x+x)b²/(1-x)
=(1-x)b²(1-x)+x*b²/(1-x)
0<x<1,a>0,b>0
所以(1-x)a²/x>0,x*b²/(1-x)>0
所以(1-x)a²/x+x*b²/(1-x)>=2√[(1-x)a²/x*x*b²/(1-x)]=2ab
所以原式>=2ab+a²+b²
所以最小值=(a+b)²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询